Enhanced TDS
Knowde-enriched technical product data sheet
Identification & Functionality
- Chemical Family
- Fillers Included
- Technologies
- Product Families
Features & Benefits
- Materials Features
- Certifications
- Advanced FDM Technology FDM (fused deposition modeling) technology works with engineering-grade thermoplastics to build strong, longlasting and dimensionally stable parts with the best accuracy and repeatability of any 3D printing technology. These parts are tough enough to be used as advanced conceptual models, functional prototypes, manufacturing tools and production parts.
- Meet production demands FDM systems are as versatile and durable as the parts they produce. Advanced FDM 3D Printers boast the largest build envelopes and material capacities in their class, delivering longer, uninterrupted build times, bigger parts and higher quantities than other additive manufacturing systems, delivering high throughput, duty cycles and utilization rates.
- Opening the way for new possibilities FDM 3D Printers streamline processes from design through manufacturing, reducing costs and eliminating traditional barriers along the way. Industries can cut lead times and costs, products turn out better and get to market faster.
- No special facilities needed FDM 3D Printers are easy to operate and maintain compared to other additive fabrication systems because there are no messy powders or resins to handle and contain, and no special venting is required because FDM systems don’t produce noxious fumes, chemicals or waste.
Applications & Uses
- Markets
- Applications
- Plastics & Elastomers End Uses
- Plastics & Elastomers Processing Methods
Properties
- Color (Properties)
- Mechanical Properties
Value Units Test Method / Conditions Compressive Modulus (Method 1, 0.05”/min) 2670 MPa ASTM D695-15 Compressive Strength (Ultimate Method 1, 0.05”/min) 67 MPa ASTM D695-15 IZOD impact (UnNotched,Method A, 23 °C) 310 J/m ASTM D256 IZOD impact (Notched,Method A, 23 °C) 85 J/m ASTM D256 Flexural Strain at Break 3 % ASTM D790 Flexural Modulus (Method 1, 0.05”/min) 10620 MPa ASTM D790 Flexural Strength (Method 1, 0.05”/min) 142 MPa ASTM D790 Elongation at Yield (Type 1, 0.125”, 0.2”/min) 0.9 % ASTM D638 Elongation at Break (Type 1, 0.125”, 0.2”/min) 1.9 % ASTM D638 Tensile Modulus (Type 1, 0.125”, 0.2”/min) 7515 MPa ASTM D638 Tensile Strength (Ultimate,Type 1, 0.125”, 0.2”/min) 75.6 MPa ASTM D638 Tensile Strength (Yield,Type 1, 0.125”, 0.2”/min) 63.4 MPa ASTM D638 - Typical Properties
Value Units Test Method / Conditions Specific Gravity 1.15 - ASTM D792 - Thermal Properties
Value Units Test Method / Conditions Melting Temperature 178 °C - Coeffcient of Thermal Expansion (XFlow,at 212°F (100 C) 300 μm/(m·°C) ASTM E831 Coeffcient of Thermal Expansion (XFlow,at 104°F (40°C) 150 μm/(m·°C) ASTM E831 Coeffcient of Thermal Expansion (Flow) at 212°F (100 C) 27 μm/(m·°C) ASTM E831 Coeffcient of Thermal Expansion (Flow,at 104°F (40°C) 25 μm/(m·°C) ASTM E831 Glass Transition Temperature (Tg) 41 °C DMA (SSYS) Heat Deflection (264 psi) 143 °C ASTM D648 - Electrical Properties
Value Units Test Method / Conditions Surface Resistivity 3.3E+04 - 6.9E+05 Ohms/square ASTM D257 Volume Resistivity 1.4E+05 - 1.012E+06 Ohms-cm ASTM D257
Regulatory & Compliance
- Certifications
- ISO 9001:2015
- AS 9100:2016
- Controlled Goods Program
Packaging & Availability
- Availability
SYSTEM AVAILABILITY LAYER THICKNESS CAPABILITY SUPPORT STRUCTURE AVAILABLE COLORS
Fortus 450mc Stratasys F900 0.01 Soluble Black